Semi-classical estimate of the residues of the scattering amplitude for long-range potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 364375
(http://iopscience.iop.org/0305-4470/36/15/311)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:36

Please note that terms and conditions apply.

Semi-classical estimate of the residues of the scattering amplitude for long-range potentials

Laurent Michel
Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France
E-mail: 1michel@math.u-bordeaux.fr

Received 1 October 2002
Published 3 April 2003
Online at stacks.iop.org/JPhysA/36/4375

Abstract

In this paper, we study the residue of the scattering amplitude for the Schrödinger operator with long-range perturbation of the Laplacian, in the case where there are resonances exponentially close to the real axis. If the resonances are simple and under a separation condition, one proves that the residue of the scattering amplitude associated with a resonance ξ is bounded by $C(h)|\operatorname{Im} \xi|$. Here $C(h)$ denotes an explicit constant depending polynomially on h^{-1} and the number of resonances in a fixed box. This generalizes a recent result of Stefanov concerning compactly supported perturbations and isolated resonances.

PACS numbers: 03.65.Sq, 03.65.Nk

1. Introduction

The aim of this paper is to study the residues of the scattering amplitude for the semi-classical Schrödinger operator, in the case where there are resonances exponentially close to the real axis. This problem was treated by Lahmar-Benbernou and Martinez [9, 10] in the particular case of a 'well in a island' with non-degenerate local minimum. Under the assumptions specified in [10], they proved that the residue $f_{\xi}^{\text {res }}(\theta, \omega, h)$ of the scattering amplitude $f(\theta, \omega, \lambda, h)$ which is associated with a pole ξ satisfies

$$
f_{\xi}^{\mathrm{res}}(\theta, \omega, h)=\mathcal{O}\left(h^{N}\right)|\operatorname{Im} \xi|
$$

for some fixed N. More recently, Stefanov [18] examined the general situation of black-box compactly supported perturbations of the Laplacian. In this paper, Stefanov deals with the case where $z_{0}(h)$ is a simple isolated resonance of $P(h)$. Then, for $(\omega, \theta) \in S^{n-1} \times S^{n-1}$, one can write the scattering amplitude $f(\theta, \omega, \lambda, h)$ near $z_{0}(h)$ as

$$
\begin{equation*}
f(\theta, \omega, \lambda, h)=\frac{f^{\mathrm{res}}(\theta, \omega, h)}{z-z_{0}(h)}+f^{\mathrm{hol}}(\theta, \omega, z, h) \tag{1.1}
\end{equation*}
$$

where $f^{\text {hol }}(\theta, \omega, z, h)$ is holomorphic near $z_{0}(h)$. Under some additional hypotheses, Stefanov proved that
$\left|f^{\text {res }}(\theta, \omega, h)\right| \leqslant C h^{-\frac{n-1}{2}}\left|\operatorname{Im} z_{0}(h)\right| \quad$ and $\quad\left|f^{\text {hol }}(\theta, \omega, z, h)\right| \leqslant C h^{-\frac{n-1}{2}}$ for z close to $z_{0}(h)$.
In this paper, we will show that these estimates still hold in a more general setting. In particular, we extend the result of Stefanov to the case of long-range perturbations and domains containing many resonances.

Let us now state the problem more precisely. Consider the Schrödinger operator $P(h)=$ $-\frac{1}{2} h^{2} \Delta+V$, in $\mathbb{R}^{n}, n \geqslant 2,0<h \leqslant 1$. The potential $V(x)$ is assumed to satisfy the following condition for some $\rho>0$.

Assumption $(\mathbf{V})_{\rho} . V$ is a real C^{∞}-smooth function such that
$\forall \alpha \in \mathbb{N}^{n} \quad \forall x \in \mathbb{R}^{n} \quad\left|\partial_{x}^{\alpha} V(x)\right| \leqslant C_{\alpha}\langle x\rangle^{-\rho-|\alpha|} \quad$ where $\quad\langle x\rangle=\left(1+|x|^{2}\right)^{\frac{1}{2}}$.
The operator $P(h)$ with domain $D(P(h))=H^{2}\left(\mathbb{R}^{n}\right)$ is self-adjoint in $L^{2}\left(\mathbb{R}^{n}\right)$. We can define the scattering matrix $S(\lambda, h)$ related to $P_{0}(h)=-\frac{1}{2} h^{2} \Delta$ and $P(h)$, as a unitary operator:

$$
S(\lambda, h): L^{2}\left(S^{n-1}\right) \longrightarrow L^{2}\left(S^{n-1}\right)
$$

Next, introduce the operator $T(\lambda, h)$ by $S(\lambda, h)=I d-2 \mathrm{i} \pi T(\lambda h)$. It is well known (see [7]) that $T(\lambda, h)$ has a kernel $T(\theta, \omega, \lambda, h)$, smooth in $(\theta, \omega) \in S^{n-1} \times S^{n-1} \backslash\{\theta=\omega\}$ and the scattering amplitude is given by

$$
f(\theta, \omega, \lambda, h)=c(\lambda, h) T(\theta, \omega, \lambda, h)
$$

with

$$
\begin{equation*}
c(\lambda, h)=-2 \pi(2 \lambda)^{-\frac{n-1}{4}}(2 \pi h)^{\frac{n-1}{2}} \mathrm{e}^{-\mathrm{i} \frac{(n-3) \pi}{4}} . \tag{1.2}
\end{equation*}
$$

Moreover, in [7], Isozaki and Kitada gave a representation formula that we will recall in the next section. In [4], Gérard and Martinez used this representation formula to prove that the scattering amplitude has a meromorphic continuation, from the lower half-plane to a conic neighbourhood of the real axis. This continuation, which we will explain in the next section, was established for $\theta \neq \omega$ and under the following hypothesis.

Assumption $\left(\mathbf{H o l}_{\infty}\right)$. We assume that there exist $\theta_{0} \in[0, \pi[$ and $R>0$ such that the potential V extends holomorphically to the domain

$$
D_{R, \theta_{0}}=\left\{z \in \mathbb{C}^{n} ;|z|>R,|\operatorname{Im} z| \leqslant \tan \theta_{0}|\operatorname{Re} z|\right\}
$$

and

$$
\exists \beta>0 \quad \exists C>0 \quad \forall x \in D_{R, \theta_{o}} \quad|V(x)| \leqslant C|x|^{-\beta}
$$

Let us note that this hypothesis allows also the resonances to be defined by complex scaling (see [14, 15]). Near the real axis, the resonances coinciding with the poles of the scattering amplitude and the multiplicity are the same. We will denote by $\operatorname{Res}(P(h))$ the set of resonances of $P(h)$ lying in $\{\operatorname{Im} z<0\}$.

Now, we will formulate our statement on the resonances. Let $E_{1}(h), E_{2}(h)$ be such that, $\forall h \in] 0,1], 0<L^{-1}<E_{1}(h) \leqslant E_{2}(h) \leqslant L<+\infty$ where $L \gg 1$ is constant independent of h. Assume that $\omega(h), S(h)>0$ satisfy

$$
\begin{equation*}
\lim _{h \rightarrow 0} \omega(h)=0 \quad \text { and } \quad S(h) \leqslant h^{\frac{3 n+5}{2}} \omega(h) . \tag{1.3}
\end{equation*}
$$

Let us set
$\Omega_{0}(h)=\left\{z \in \mathbb{C} ; E_{1}(h)-\omega(h) \leqslant \operatorname{Re} z \leqslant E_{2}(h)+\omega(h), 0 \leqslant-\operatorname{Im} z \leqslant S(h)\right\}$.

Figure 1. Isolated resonances.

We will say that a resonance is simple, if it is a simple pole of the scattering amplitude. Until the end of this paper, we will assume that each $\xi \in \Omega_{0}(h) \cap \operatorname{Res}(P(h))$ is a simple resonance and we denote

$$
\Lambda(h)=\Omega_{0}(h) \cap \operatorname{Res}(P(h)) \text { and } K(h)=\sharp \Lambda(h)
$$

We will also assume that the set of resonances $\Lambda(h)$ is isolated in the sense that

$$
\begin{equation*}
\operatorname{Res}(P(h)) \cap\left(\Omega(h) \backslash \Omega_{0}(h)\right)=\emptyset \tag{1.5}
\end{equation*}
$$

where
$\Omega(h)=\left\{z \in \mathbb{C} ; E_{1}(h)-7 \omega(h) \leqslant \operatorname{Re} z \leqslant E_{2}(h)+7 \omega(h), 0 \leqslant-\operatorname{Im} z \leqslant 4 h^{-n-2} S(h)\right\}$.

Let us note that if $\omega(h)$ satisfies $0<\omega(h)<h^{n+\alpha}$ with $\alpha>0$, then $E_{1}(h)$ and $E_{2}(h)$ can be chosen so that
$\operatorname{Res}(P(h)) \cap\left(\left[E_{1}-7 \omega, E_{2}+7 \omega\right]+\mathrm{i}[0,-S(h)]\right)=\operatorname{Res}(P(h)) \cap \Omega_{0}(h)$.
This is a direct consequence of the fact that

$$
\sharp\left(\operatorname{Res}(P(h)) \cap\left(\left[L^{-1}, L\right]+\mathrm{i}\left[-h^{-n-2} S(h), 0\right]\right)\right)=\mathcal{O}\left(h^{-n}\right)
$$

which comes from the trace formula proved in $[14,15]$. Then, to ensure that (1.5) holds, it suffices to prove that

$$
\operatorname{Res}(P(h)) \cap\left(\left[E_{1}-7 \omega, E_{2}+7 \omega\right]+\mathrm{i}\left[-S(h),-4 S(h) h^{-n-2}\right]\right)=\emptyset .
$$

We will explain further how this can be done in some special situations.
Under the above assumptions, the scattering amplitude takes the form

$$
\begin{equation*}
f(\theta, \omega, z, h)=\sum_{\xi \in \Lambda(h)} \frac{f_{\xi}^{\mathrm{res}}(\theta, \omega, h)}{z-\xi}+f^{\mathrm{hol}}(\theta, \omega, z, h) \tag{1.8}
\end{equation*}
$$

where $f^{\text {hol }}(\theta, \omega, z, h)$ is holomorphic in $\Omega(h)$ (see figure 1). Our aim is to estimate the residues $f_{\xi}^{\mathrm{res}}(\theta, \omega, h)$ and the holomorphic part $f^{\text {hol }}(\theta, \omega, z, h)$. For this purpose, we need a
separation assumption on the resonances of $P(h)$. We will suppose that there exists $\epsilon>0$ such that the following condition is satisfied.

Assumption ($\mathbf{S e p}_{\epsilon}$). For all $\xi, \xi^{\prime} \in \Omega_{0}(h) \cap \operatorname{Res}(P(h))$ with $\xi \neq \xi^{\prime}$, we have

$$
\left|\xi-\xi^{\prime}\right| \geqslant \epsilon S(h)
$$

Now, we are in a position to announce the main result of this paper.
Theorem 1. Assume that the potential V satisfies hypotheses $(\mathbf{V})_{\rho}$ with $\rho>0,\left(\mathbf{H o l}_{\infty}\right)$ and $\left(\mathbf{S e p}_{\epsilon}\right)$ with $\epsilon>0$. Assume that all the resonances in $\Omega_{0}(h)$ are simple and that $\operatorname{Res}(P(h)) \cap\left(\Omega(h) \backslash \Omega_{0}(h)\right)=\emptyset$. Let $(\theta, \omega) \in S^{n-1} \times S^{n-1}$ with $\theta \neq \omega$. Then, there exist $C_{\epsilon}>0$ and $h_{0}>0$ such that for all $0<h<h_{0}$, we have

$$
\begin{array}{ll}
\left|f_{\xi}^{\mathrm{res}}(\theta, \omega, h)\right| \leqslant C_{\epsilon} h^{-\frac{n-1}{2}} K(h)^{\frac{24}{\epsilon^{2}}}|\operatorname{Im} \xi| & \forall \xi \in \Lambda(h) \\
\left|f^{\mathrm{hol}}(\theta, \omega, z, h)\right| \leqslant C_{\epsilon} h^{-\frac{n-1}{2}} K(h)^{\frac{24}{\epsilon^{2}}} \log (1+K(h)) & \forall z \in \tilde{\Omega}(h)
\end{array}
$$

where
$\tilde{\Omega}(h)=\left\{z \in \mathbb{C} ; E_{1}(h)-\omega(h) \leqslant \operatorname{Re} z \leqslant E_{2}(h)+\omega(h), 0 \leqslant-\operatorname{Im} z \leqslant 2 S(h)\right\}$.
Let us make a comparison between our result and theorem 1 in [18]. First, our theorem holds for long-range potentials whereas Stefanov's result is proved for compactly supported perturbations of the Laplacian. This creates some difficulties due to the fact that, in the long-range case, we do not have some simple representation formula for f.

The second important difference concerns the density of resonances that we deal with. In [18], it is assumed that $z_{0}(h)$ is the only resonance in $\Omega(h)$. Here we consider the case where the number $K(h)$ of resonances is larger than one. As $K(h)$ may behave like h^{-n} when h goes to 0 , our aim is to prove that the bound on the residues depends polynomially on $K(h)$, while it is easier to obtain a bound depending exponentially on $K(h)$.

Let us note that our result cannot be obtained as a direct consequence of Stefanov's. Indeed, one could try to cover $\Omega(h)$ with some boxes containing only one resonance and to apply Stefanov's theorem on each box. If one follows this approach, one has to make a separation assumption necessary to apply Stefanov's estimate. Roughly speaking, one has to suppose $\left(\mathbf{S e p}_{\epsilon}\right)$ with $\epsilon=h^{-\frac{3 n+4}{2}}$ so that the hypotheses become more restrictive than in theorem 1.

Now, let us make some comments on the term $K(h)$. It is easy to deduce from the trace formula proved in $[14,15]$ that there exists $\tilde{n} \in \mathbb{N}$ such that $K(h)=\mathcal{O}\left(h^{-\tilde{n}}\right)$. Therefore, theorem 1 yields

$$
\begin{array}{ll}
\left|f_{\xi}^{\mathrm{res}}(\theta, \omega, h)\right| \leqslant C_{\epsilon} h^{-n_{\epsilon}}|\operatorname{Im} \xi| & \forall \xi \in \Lambda(h) \\
\left|f^{\text {hol }}(\theta, \omega, z, h)\right| \leqslant C_{\epsilon} h^{-1-n_{\epsilon}} & \forall z \in \tilde{\Omega}(h)
\end{array}
$$

with $n_{\epsilon} \in \mathbb{N}$. In particular $\left|f^{\text {hol }}\right|$ and $\left|f_{\xi}^{\text {res }}\right| /|\operatorname{Im} \xi|$ are polynomially bounded with respect to h^{-1}. If we assume additionally that the number $K(h)$ is bounded with respect to h, theorem 1 shows that $\left|f^{\text {hol }}\right|$ and $\left|f_{\xi}^{\text {res }}\right| /|\operatorname{Im} \xi|$ are bounded by $C h^{-\frac{n-1}{2}}$. Therefore, the bound found by Stefanov in the case $K(h)=1$ is available in the case where $K(h)$ is bounded.

In conclusion, let us discuss briefly the existence of the Breit-Wigner formula for the scattering amplitude. Starting from formula (1.8) and differentiating with respect to z, one obtains

$$
\partial_{z} f(\theta, \omega, z, h)=-\sum_{\xi \in \Lambda(h)} \frac{f_{\xi}^{\mathrm{res}}(\theta, \omega, h)}{(z-\xi)^{2}}+\partial_{z} f^{\mathrm{hol}}(\theta, \omega, z, h)
$$

Introducing the term $\operatorname{Im} \xi$ in this formula we get

$$
\partial_{z} f(\theta, \omega, z, h)=\sum_{\xi \in \Lambda(h)} c(\xi, h) \frac{-\operatorname{Im} \xi}{|z-\xi|^{2}}+\partial_{z} f^{\mathrm{hol}}(\theta, \omega, z, h)
$$

where $|c(\xi, h)|=\frac{\left|f_{\xi}^{\text {res }}(\theta, \omega, h)\right|}{|I m \xi|} \leqslant C h^{-\frac{h-1}{2}}$. Moreover, the term $\partial_{z} f^{\text {hol }}$ can be estimated by using theorem 1 and Cauchy's formula. In particular, if $S(h) \geqslant C h^{M}$ for some $C, M>0$, we obtain

$$
\partial_{z} f(\theta, \omega, z, h)=\sum_{\xi \in \Lambda(h)} c(\xi, h) \frac{-\operatorname{Im} \xi}{|z-\xi|^{2}}+\mathcal{O}\left(h^{-N}\right)
$$

where N is a positive constant. In the case where $\Lambda(h)=\left\{\xi_{0}(h)\right\}$ one obtains

$$
\partial_{z} f(\theta, \omega, z, h)=c\left(\xi_{0}, h\right) \frac{-\operatorname{Im} \xi_{0}}{\left|z-\xi_{0}\right|^{2}}+\mathcal{O}\left(h^{-N}\right)
$$

with $c\left(\xi_{0}, h\right)=\mathcal{O}\left(h^{-\frac{n-1}{2}}\right)$. Therefore, we will obtain a Breit-Wigner formula, if we can bound the coefficient $c\left(\xi_{0}, h\right)$ from below. In the general case, it is not sufficient to prove a lower bound for the coefficients $c(\xi, h)$. Indeed, we do not control the argument of these complex numbers and there could be some cancellation between different terms of the sum. This is a difficult open problem.

We finish this introduction by giving some examples of potentials satisfying the assumptions of theorem 1 .

Example 1. We consider the case of a 'well in a island'. For some fixed energy λ, the potential $V(x)$ is assumed to satisfy

$$
\left\{x \in \mathbb{R}^{n} ; V(x)>\lambda\right\}=U \backslash\left\{x_{0}\right\}
$$

where U is bounded and connected and x_{0} is a point of U. It is also required that $V^{\prime \prime}\left(x_{0}\right)$ is positive definite. More precisely, we assume that after a symplectic change of coordinate, the symbol $\sigma_{P}(x, \xi)$ of $P(h)$ can be written as

$$
\sigma_{P}(x, \xi)=\sum_{j=1}^{n} \frac{\lambda_{j}}{2}\left(\xi_{j}^{2}+x_{j}^{2}\right)+\mathcal{O}\left((x, \xi)^{3}\right)
$$

where the λ_{j} are strictly positive and linearly independent of \mathbb{Z}. In that case, for all $\alpha>0$ and $\delta>0$, the form of the resonance of $P(h)$ in $\mathcal{O}_{\alpha, \delta}(h)=[\lambda, \lambda+\alpha h]-\mathrm{i}[0, \delta]$ is well known (see [5, 8, 13]). In that situation, we are in a position to verify all the hypotheses required in theorem 1. First, we know from [8] that the resonance $\xi(h) \in \operatorname{Res}(P(h)) \cap \mathcal{O}_{\alpha, \delta}(h)$ have the following expansion:

$$
\begin{equation*}
\xi(h)=\lambda+h \sum_{j=1}^{n}\left(k_{j}+\frac{1}{2}\right) \lambda_{j}+\mathcal{O}\left(h^{2}\right) \tag{1.9}
\end{equation*}
$$

with $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ and $|k| \leqslant C$. Moreover, we know from theorem 10.11 in [5] that there exists $S_{0}>0$ such that

$$
\begin{equation*}
\forall \xi \in \operatorname{Res}(P(h)) \cap \mathcal{O}_{\alpha, \delta}(h) \quad|\operatorname{Im} \xi|=\mathcal{O}\left(\mathrm{e}^{-S_{0} / h}\right) \tag{1.10}
\end{equation*}
$$

Denoting $m=\inf \left\{\left|\sum_{j=1}^{n} \lambda_{j} k_{j}\right| ; k \in \mathbb{Z}^{n},|k| \leqslant C\right\}>0$, we deduce from (1.9) that if $\xi \neq \xi^{\prime}$ are two resonances in $\mathcal{O}_{\alpha, \delta}(h)$ we have

$$
\begin{equation*}
\left|\xi-\xi^{\prime}\right| \geqslant h\left|\sum_{j=1}^{n}\left(k_{j}-k_{j}^{\prime}\right) \lambda_{j}\right|-\mathcal{O}\left(h^{2}\right) \geqslant m h-\mathcal{O}\left(h^{2}\right) \geqslant C h \tag{1.11}
\end{equation*}
$$

Now, let us set $\omega(h)=h^{n+1}$ and $S(h)=h^{\frac{3 n+5}{2}} \omega(h)$. As was noted before assumption ($\mathbf{S e p}_{\epsilon}$), we can choose $\lambda+7 \omega(h)<E_{1}(h)<E_{2}(h)<\lambda+\alpha h-7 \omega(h)$ such that

$$
\operatorname{Res}(P(h)) \cap\left(\left[E_{1}-7 \omega, E_{1}\right]-\mathrm{i}[0, \delta]\right)=\emptyset
$$

and

$$
\operatorname{Res}(P(h)) \cap\left(\left[E_{2}, E_{2}+7 \omega\right]-\mathrm{i}[0, \delta]\right)=\emptyset .
$$

Combining these properties and (1.10), it follows that $\Omega(h)$ and $\Omega_{0}(h)$ defined by (1.6) and (1.4) satisfy

$$
\Omega(h) \subset \mathcal{O}_{\alpha, \delta}(h) \quad \text { and } \quad \operatorname{Res}(P(h)) \cap \Omega(h) \subset \Omega_{0}(h) .
$$

Moreover, it follows from (1.11) that for all $\epsilon>0\left(\mathbf{S e p}_{\epsilon}\right)$ is verified with $S(h)$ as above, so that we have verified all the hypotheses required in theorem 1. Finally, we note that in the present case, the number $K(h)$ is bounded with respect to h. This is not true in general and in the following example, we describe such a situation.

Example 2. For $a>0$, let $\phi_{a} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $\Phi_{a}(x)=1$ for $|x| \leqslant 2 a$. Let $b>0$, $y_{0} \in \mathbb{R}^{n}$ and set

$$
V(x)=\Phi-a\left(x-y_{0}\right)\left(\left|x-y_{0}\right|^{2}+b\right) .
$$

In that situation, it is shown in [1] (cf the example following theorem 6) that

$$
\begin{align*}
& \forall \lambda \in] b, b+a^{2}\left[\quad \exists C_{\lambda}, \delta_{\lambda}>0\right. \\
& \sharp \operatorname{Res}(P(h)) \cap\left(\left[\lambda-\delta_{\lambda} h, \lambda+\delta_{\lambda} h\right]-\mathrm{i}\left[0, \delta_{\lambda} h\right]\right) \geqslant C_{\lambda} h^{1-n} . \tag{1.12}
\end{align*}
$$

Now, we fix two energy levels $b<E_{0}<E_{3}<b+a^{2}$. Denoting $\sigma_{P}(x, \xi)=\frac{1}{2}|\xi|^{2}+V(x)$ the symbol of the operator $P(h)$, we assume that E_{0} and E_{3} are no-critical values of σ_{P}. Denoting $W_{\text {ext }}$ as the unbounded connected component of $\sigma_{P}^{-1}\left(\left[E_{0}, E_{3}\right]\right)$, we assume that all points in $W_{\text {ext }}$ are non-trapping in the sense of [12]. Under the above assumptions, Stefanov proved in [16] that for all $M>0$, there exists a function $0<\alpha(h)=\mathcal{O}\left(h^{\infty}\right)$ such that for h small enough

$$
\begin{equation*}
\operatorname{Res}(P(h)) \cap\left(\left[E_{0}, E_{3}\right]+\mathrm{i}[-M h,-\alpha(h)]\right)=\emptyset . \tag{1.13}
\end{equation*}
$$

Moreover, we have seen that if we set $\omega(h)=h^{n+\alpha}, \alpha>0$ and $0<S(h)<h^{\frac{3 n+5}{2}} \omega(h)$, we can choose $E_{0}<E_{1}(h)<E_{2}(h)<E_{3}$ such that $\left|E_{1}(h)-E_{2}(h)\right| \geqslant \frac{E_{3}-E_{0}}{2}$ and (1.7) holds. Combining (1.13) and (1.7), assumption (1.5) is immediately satisfied (see figure 2).

On the other hand, if we assume that $\left(\mathbf{S e p}_{\epsilon}\right)$ is satisfied and that the resonances are simple then we can apply theorem 1 to get

$$
\left|f_{\xi}^{\mathrm{res}}(\theta, \omega, h)\right| \leqslant C_{\epsilon} h^{-\frac{n-1}{2}} K(h)^{\frac{24}{\epsilon^{2}}}|\operatorname{Im} \xi| \quad \forall \xi \in \Lambda(h)
$$

To conclude, let us note that combining (1.13) and (1.12), it comes easily that $K(h) \geqslant C h^{1-n}$. Therefore, the estimate $K(h) \leqslant C h^{-n}$ is almost sharp and it follows that

$$
\left|f_{\xi}^{\mathrm{res}}(\theta, \omega, h)\right| \leqslant C_{\epsilon} h^{\frac{1}{2}-n\left(\frac{1}{2}+\frac{24}{\epsilon^{2}}\right)}|\operatorname{Im} \xi| \quad \forall \xi \in \Lambda(h)
$$

In our analysis we deal with a representation formula for the scattering amplitude. In the next section, we recall the representation given by Isozaki and Kitada [7], for λ real and its extension to a conic neighbourhood of the real axis due to Gérard and Martinez [4].

Figure 2. Resonances associated with a non-trapping potential outside a bounded region.

2. Review on the representation formula and the meromorphic continuation of $T(\theta, \omega, \lambda, h)$

2.1. The formula of Isozaki-Kitada

The first step towards the proof of theorem 1 is to establish a representation formula for $T(\theta, \omega, \lambda, h)$ in the long-range case. Such a formula has been obtained in [7] and it was used in [12] to prove an asymptotic expansion of the scattering amplitude in the non-trapping case with $\rho>1$. We begin with some notation.

Definition 1. Let Ω be an open subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$. For $m, u \in \mathbb{R}$ and $k \in \mathbb{Z}$, we denote by $A_{k}^{m, u}(\Omega)$ the class of symbols $a(x, \xi, h)$ such that $(x, \xi) \mapsto a(x, \xi, h)$ belongs to $C^{\infty}(\Omega)$ and $\forall(\alpha, \beta) \in \mathbb{N}^{n} \times \mathbb{N}^{n} \quad \exists C>0 \quad \forall(x, \xi) \in \Omega \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leqslant C h^{k}\langle x\rangle^{m-|\alpha|}\langle\xi\rangle^{u-|\beta|}$ and set $A_{k}^{m, \infty}(\Omega)=\bigcap_{u \in \mathbb{R}} A_{k}^{m, u}(\Omega)$. In the case where $\Omega=\mathbb{R}^{n} \times \mathbb{R}^{n}$, we will write $A_{k}^{m, u}$ instead of $A_{k}^{m, u}(\Omega)$.

We also use the incoming and outgoing subsets of the phase space having the form
$\Gamma_{ \pm}(R, d, \sigma)=\left\{(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}:|x|>R, d^{-1}<|\xi|<d, \pm \cos (x, \xi)> \pm \sigma\right\}$
for $R>1, d>1$ and $\sigma \in]-1,1\left[\right.$, where $\cos (x, \xi)=\frac{\langle x, \xi\rangle}{|x||\xi|}$. For $\alpha>\frac{1}{2}$, introduce $F_{0}(\lambda, h)$: $L_{\alpha}^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(S^{n-1}\right)$, by

$$
\left(F_{0}(\lambda, h) f\right)(\omega)=c_{0}(\lambda, h) \int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i} h^{-1} \sqrt{2 \lambda}\langle x, \omega\rangle} f(x) \mathrm{d} x \quad \lambda>0 .
$$

The idea of Isozaki and Kitada was to approximate the wave operators by Fourier integral operators $I_{h}\left(a_{ \pm}, \Phi_{ \pm}\right)$with phases $\Phi_{ \pm}$and symbols $a_{ \pm}$. Formally, with
$I_{h}\left(a_{ \pm}, \Phi_{ \pm}\right)(f)(x)=(2 \pi h)^{-n} \iint \exp \left(\mathrm{i} h^{-1}\left(\Phi_{ \pm}(x, \xi)-\langle y, \xi\rangle\right)\right) a_{ \pm}(x, \xi) f(y) \mathrm{d} y \mathrm{~d} \xi$
the phases $\Phi_{ \pm}$have to solve the eikonal equation

$$
\frac{1}{2}\left|\nabla_{x} \Phi_{ \pm}(x, \xi)\right|^{2}+V(x)=\frac{1}{2}|\xi|^{2}
$$

and the symbols $a_{ \pm}$are the solution to

$$
\begin{equation*}
\left(-\frac{1}{2} h^{2} \Delta+V(x)-\frac{1}{2}|\xi|^{2}\right)\left(a_{ \pm} \mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm}}\right) \sim 0 \tag{2.1}
\end{equation*}
$$

Let $R_{0} \gg 1,1<d_{4}<d_{3}<d_{2}<d_{1}<d_{0}$ and $0<\sigma_{2}^{-}<\sigma_{1}^{-}<\sigma_{0}^{-}<\sigma_{0}^{+}<$ $\sigma_{1}^{+}<\sigma_{2}^{+}<1$. Denote $\tau_{j}^{ \pm}=-\sigma_{j}^{\mp}$ for $j=0,1,2$, so that we have also $-1<\tau_{2}^{-}<\tau_{1}^{-}<$ $\tau_{0}^{-}<\tau_{0}^{+}<\tau_{1}^{+}<\tau_{2}^{+}<0$. According to proposition 2.4 of [6], we can find real C^{∞} smooth functions $\Phi_{ \pm a}$ satisfying the following properties:
$(\varphi 1) \quad \Phi_{ \pm a}(x, \xi)$ solves the eikonal equation $\frac{1}{2}\left|\nabla_{x} \Phi_{ \pm a}(x, \xi)\right|^{2}+V(x)=\frac{1}{2}|\xi|^{2}$ in $\Gamma_{ \pm}\left(R_{0}, d_{0}, \tau_{0}^{ \pm}\right)$.
($\varphi 2$) $\Phi_{ \pm a}(x, \xi)-\langle x, \xi\rangle$ belongs to $A_{0}^{\epsilon, 0}$ for all $\epsilon>0$.
($\varphi 3$) For all $(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n},\left|\frac{\partial^{2} \Phi_{ \pm a}}{\partial_{x_{j}} \partial_{\xi_{k}}}(x, \xi)-\delta_{j k}\right|<\epsilon\left(R_{0}\right), \delta_{j k}$ being the Kronecker symbol, where $\epsilon\left(R_{0}\right)$ can be made as small as we wish by taking R_{0} large enough.

Next, we determine $a_{ \pm}$in the form

$$
a_{ \pm}(x, \xi, h)=\sum_{j \geqslant 0} a_{ \pm j}(x, \xi) h^{j}
$$

Replacing $a_{ \pm}$by this expansion in (2.1) and identifying the power of h, we obtain the following transport equations:

$$
\left\{\begin{array}{l}
\left\langle\nabla_{x} \Phi_{ \pm a}, \nabla_{x} a_{ \pm 0}\right\rangle+\frac{1}{2} \Delta_{x} \Phi_{ \pm a} a_{ \pm 0}=0 \tag{2.2}\\
\left\langle\nabla_{x} \Phi_{ \pm a}, \nabla_{x} a_{ \pm j}\right\rangle+\frac{1}{2} \Delta_{x} \Phi_{ \pm a} a_{ \pm j}=\frac{i}{2} \Delta_{x} a_{ \pm j-1} \quad j \geqslant 1
\end{array}\right.
$$

with the conditions at infinity

$$
\begin{equation*}
a_{ \pm 0} \rightarrow 1 \quad \text { and } \quad a_{ \pm j} \rightarrow 0 \quad j \geqslant 1 \quad \text { as } \quad|x| \rightarrow 0 \tag{2.3}
\end{equation*}
$$

These equations are solved by the standard characteristic curve method (see [6, 7, 12]) and finally, we find some symbols $a_{ \pm j}$ such that: (s0) $a_{ \pm j}$ belongs to $A_{0}^{-j,-\infty}$. (s1) $\operatorname{supp}\left(a_{ \pm j}\right) \subset$ $\Gamma_{ \pm}\left(3 R_{0}, d_{1}, \tau_{1}^{ \pm}\right)$. (s2) $a_{ \pm j}$ solves equation (2.2) with (2.3) in $\Gamma_{ \pm}\left(4 R_{0}, d_{2}, \tau_{2}^{ \pm}\right)$. (s3) $a_{ \pm j}$ solves equation (2.2) in $\Gamma_{ \pm}\left(4 R_{0}, d_{1}, \tau_{2}^{ \pm}\right)$. Now, fix an integer N large enough (to be chosen in the following) and set $a_{ \pm}(x, \xi, h)=\sum_{j=0}^{N} a_{ \pm j}(x, \xi) h^{j} \in A_{0}^{0,-\infty}$. Then the operator $J_{ \pm a}(h)=$ $I_{h}\left(a_{ \pm}, \Phi_{ \pm a}\right)$ is well defined and the operator $K_{ \pm a}$ given by $K_{ \pm a}=P(h) J_{ \pm a}-J_{ \pm a} P_{0}(h)$ is also a F.I.O. In fact, $K_{ \pm a}=I_{h}\left(k_{ \pm a}, \Phi_{ \pm a}\right)$ with

$$
k_{ \pm a}=\mathrm{e}^{-\mathrm{i} h^{-1} \Phi_{ \pm}}\left(-\frac{1}{2} h^{2} \Delta+V(x)-\frac{1}{2}|\xi|^{2}\right)\left(\mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm}} a_{ \pm}\right)
$$

It follows that the symbol $k_{ \pm a}$ has the following properties: $(\mathrm{k} 0) k_{ \pm a}$ belongs to $A_{1}^{-1,-\infty}$. (k1) $\operatorname{supp}\left(k_{ \pm a}\right) \subset \Gamma_{ \pm}\left(3 R_{0}, d_{1}, \tau_{1}^{ \pm}\right)$. (k2) $k_{ \pm a}$ belongs to $A_{N+2}^{-(N+2),-\infty}\left(\Gamma_{ \pm}\left(4 R_{0}, d_{1}, \tau_{2}^{ \pm}\right)\right)$.

Similarly, we define $J_{ \pm b}=I_{h}\left(b_{ \pm}, \Phi_{ \pm b}\right)$ for the region $\Gamma_{ \pm}\left(5 R_{0}, d_{3}, \sigma_{1}^{ \pm}\right)$. First, we define the phase functions $\Phi_{ \pm b} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2 n}\right)$ verifying $(\varphi 1)$ in $\Gamma_{ \pm}\left(R_{0}, d_{0}, \sigma_{0}^{ \pm}\right),(\varphi 2)$ and ($\left.\varphi 3\right)$. Next, we define a symbol

$$
b_{ \pm}(x, \xi, h)=\sum_{j=0}^{N} b_{ \pm j}(x, \xi) h^{j}
$$

satisfying (s0), (s1) for the region $\Gamma_{ \pm}\left(5 R_{0}, d_{3}, \sigma_{1}^{ \pm}\right)$, (s2) for $\Gamma_{ \pm}\left(6 R_{0}, d_{4}, \sigma_{2}^{ \pm}\right)$and (s3) for $\Gamma_{ \pm}\left(6 R_{0}, d_{3}, \sigma_{2}^{ \pm}\right)$. Using the same arguments as above, we define $K_{ \pm b}(h)=P(h) J_{ \pm b}(h)-$ $J_{ \pm b}(h) P_{0}(h)=I_{h}\left(k_{ \pm b}, \Phi_{ \pm b}\right)$, with

$$
\begin{equation*}
k_{ \pm b}=\mathrm{e}^{-\mathrm{i} h^{-1} \Phi_{ \pm b}}\left(-\frac{1}{2} h^{2} \Delta+V(x)-\frac{1}{2}|\xi|^{2}\right)\left(\mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm b}} b_{ \pm}\right) . \tag{2.4}
\end{equation*}
$$

Then $k_{ \pm b}$ satisfies (k0), (k1) for $\Gamma_{ \pm}\left(5 R_{0}, d_{3}, \sigma_{1}^{ \pm}\right)$and (k2) for $\Gamma_{ \pm}\left(6 R_{0}, d_{3}, \sigma_{2}^{ \pm}\right)$. Now, the Isozaki-Kitada formula is stated in the following proposition.

Proposition 1 (Isozaki-Kitada [7]). For $\lambda \in] \frac{d_{4}^{-2}}{2}, \frac{d_{4}^{2}}{2}$, we have

$$
\begin{equation*}
T(\lambda, h)=T_{1}(\lambda, h)-T_{2}(\lambda, h) \tag{2.5}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{1}(\lambda, h)=F_{0}(\lambda, h)\left(J_{+a}^{*}(h)+J_{-a}^{*}(h)\right)\left(K_{+b}(h)+K_{-b}(h)\right) F_{0}^{*}(\lambda, h) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}(\lambda, h)=F_{0}(\lambda, h)\left(K_{+a}^{*}(h)+K_{-a}^{*}(h)\right) R(\lambda+\mathrm{i} 0)\left(K_{+b}(h)+K_{-b}(h)\right) F_{0}^{*}(\lambda, h) . \tag{2.7}
\end{equation*}
$$

In formula (2.7), $R(\lambda+\mathrm{i} 0)$ is the limit of the resolvent on the real line. More precisely, let us denote $R(z)=(P(h)-z)^{-1}, z \in \mathbb{C} \backslash \mathbb{R}$ the resolvent of $P(h)$, then $R(\lambda \pm \mathrm{i} 0)=$ $\lim _{\epsilon \rightarrow 0, \epsilon>0} R(\lambda \pm \mathrm{i} \epsilon)$. Here we take the limit in the spaces of bounded operators $\mathcal{L}\left(L_{\alpha}^{2}, L_{-\alpha}^{2}\right), \alpha>\frac{1}{2}$ with $L_{\alpha}^{2}=\left\{f:\langle x\rangle^{\alpha} f \in L^{2}\left(\mathbb{R}^{n}\right)\right\}$ and for $\alpha, \beta \in \mathbb{R},\|\cdot\|_{\alpha, \beta}$ is the natural norm on $\mathcal{L}\left(L_{\alpha}^{2}, L_{\beta}^{2}\right)$.

Using this formula and a resolvent estimate proved by Burq [2] and improved by Vodev [22] and Cardoso-Vodev [3], it was proved in [11] that the scattering amplitude is polynomially bounded with respect to h. More precisely, one has the following theorem.

Theorem 2. Fix an energy $\lambda>0$ and assume that the potential V satisfies $(\mathbf{V})_{\rho}$ with $\rho>0$ and $\left(\mathbf{H o l}_{\infty}\right)$. Then we have

$$
\begin{equation*}
\forall(\omega, \theta) \in S^{n-1} \times S^{n-1} \backslash\{\theta=\omega\} \quad f(\theta, \omega, \lambda, h)=\mathcal{O}\left(h^{-\frac{n-1}{2}}\right) \tag{2.8}
\end{equation*}
$$

Let us remark that this result is not exactly the same as in [11], where it is assumed that $\rho>1$. Nevertheless, it is not hard to verify that the proof given in [11], still works in the case $\rho>0$.

2.2. Meromorphic continuation of the scattering amplitude and estimates for complex energies

Here, we recall briefly how Gérard and Martinez [4] extend the formula of Isozaki and Kitada to a conic neighbourhood of the real axis in the complex plane. Starting from this formula, we establish some estimates of the scattering amplitude in a conic neighbourhood of \mathbb{R}_{+}^{*}. Let us begin with some notation. For $R>0$ large enough, $d>0, \epsilon>0$ and $\sigma \in] 0$, 1[, we denote

$$
\begin{aligned}
\Gamma^{ \pm}(R, d, \epsilon, \sigma) & =\left\{(x, \xi) \in \mathbb{C}^{2 n} ;|\operatorname{Re} x|>R, d^{-1}<|\operatorname{Re} \xi|<d\right. \\
& \pm \cos (\operatorname{Re} x, \operatorname{Re} \xi) \geqslant \pm \sigma,|\operatorname{Im} x| \leqslant \epsilon\langle\operatorname{Re} x\rangle,|\operatorname{Im} \xi| \leqslant \epsilon\langle\operatorname{Re} \xi\rangle\} .
\end{aligned}
$$

From propositions 2.1 and 3.1 in [4], we deduce that the phases $\Phi_{ \pm a}, \Phi_{ \pm b}$ and the symbols $a_{ \pm}$and $b_{ \pm}$can be constructed so that the following propositions hold.

Proposition 2. For each $\epsilon>0$, there exists $R_{0}>0$ such that the phase function $\Phi_{ \pm a}$ (resp. $\left.\Phi_{ \pm b}\right)$ has a holomorphic continuation in $\Gamma^{ \pm}\left(R_{0}, d_{0}, \epsilon, \tau_{0}^{ \pm}\right)\left(\operatorname{resp} . \Gamma^{ \pm}\left(R_{0}, d_{0}, \epsilon, \sigma_{0}^{ \pm}\right)\right)$ and satisfies

$$
\left(\nabla_{x} \Phi_{ \pm}(x, \xi)\right)^{2}+V(x)=\xi^{2} \quad \Phi_{ \pm}(x, \xi)-\langle x, \xi\rangle=\mathcal{O}(\langle x\rangle+\langle\xi\rangle)^{1-\rho}\langle\xi\rangle^{-1}
$$

uniformly in $\Gamma^{ \pm}\left(R_{0}, d_{0}, \epsilon, \tau_{0}^{ \pm}\right)\left(\operatorname{resp} . \Gamma^{ \pm}\left(R_{0}, d_{0}, \epsilon, \sigma_{0}^{ \pm}\right)\right)$.
Proposition 3. For $R_{0}>0$ large enough and $\epsilon>0$ small enough, there exists $\alpha>0$ such that $a_{ \pm}$has an extension to $\Gamma^{ \pm}\left(3 R_{0}, d_{1}, \epsilon, \tau_{1}^{ \pm}\right)$which is holomorphic in $\Gamma^{ \pm}\left(4 R_{0}, d_{2}, \epsilon, \tau_{2}^{ \pm}\right)$.

Moreover, $a_{ \pm}(x, \xi, h)$ is bounded uniformly with respect to $(x, \xi) \in \Gamma^{ \pm}\left(3 R_{0}, d_{1}, \epsilon, \tau_{1}^{ \pm}\right)$, $h \in] 0,1]$ and we have the following estimates:
$a_{ \pm}(x, \xi, h)=1+\mathcal{O}\left(\langle x\rangle^{-\rho}\right)$
$k_{ \pm a}(x, \xi, h)=\mathrm{e}^{-\mathrm{i} h^{-1} \Phi_{ \pm}(x, \xi)}\left(P(h)-\frac{1}{2} \xi^{2}\right)\left(\mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm}(x, \xi)} a_{ \pm}(x, \xi, h)\right)=\mathcal{O}\left(\mathrm{e}^{-\alpha\langle x\rangle\langle\xi\rangle / h}\right)$
uniformly with respect to $h \in] 0,1]$ and $(x, \xi) \in \Gamma^{ \pm}\left(4 R_{0}, d_{2}, \epsilon, \tau_{2}^{ \pm}\right)$. Similarly, the preceding statement is true for the symbol $b_{ \pm}$and the domains $\Gamma^{ \pm}\left(5 R_{0}, d_{3}, \epsilon, \sigma_{1}^{ \pm}\right), \Gamma^{ \pm}\left(6 R_{0}, d_{4}, \epsilon, \sigma_{2}^{ \pm}\right)$ respectively.

Now, using proposition 1, we can write the scattering matrix as

$$
S(\lambda, h)=c(\lambda, h)\left(T_{1}(\lambda, h)-T_{2}(\lambda, h)\right)
$$

where T_{1} and T_{2} are given by (2.6), (2.7) and are associated with our new symbols. Denote by $T_{1}(\theta, \omega, \lambda, h)$ the kernel of $T_{1}(\lambda, h)$ and by $T_{2}(\theta, \omega, \lambda, h)$ the kernel of $T_{2}(\lambda, h)$. Let us set

$$
\psi_{ \pm b}^{ \pm a}(x, \theta, \omega)=\Phi_{ \pm b}(x, \sqrt{2 \lambda} \omega)-\Phi_{ \pm a}(x, \sqrt{2 \lambda} \theta) .
$$

It is easy to see that for $\lambda>0$ we have

$$
\begin{equation*}
T_{1}(\theta, \omega, \lambda, h)=\left(T_{1,+b}^{+a}+T_{1,-b}^{+a}+T_{1,+b}^{-a}+T_{1,-b}^{-a}\right)(\theta, \omega, \lambda, h) \tag{2.10}
\end{equation*}
$$

with
$T_{1, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)=c_{0}(\lambda, h)^{2} \int \mathrm{e}^{\mathrm{i} h^{-1} \psi_{ \pm b}^{ \pm a}(x, \theta, \omega)} k_{ \pm b}(x, \sqrt{2 \lambda} \omega) \bar{a}_{ \pm}(x, \sqrt{2 \lambda} \theta) \mathrm{d} x$
and

$$
\begin{equation*}
T_{2}(\theta, \omega, \lambda, h)=\left(T_{2,+b}^{+a}+T_{2,-b}^{+a}+T_{2,+b}^{-a}+T_{2,-b}^{-a}\right)(\theta, \omega, \lambda, h) \tag{2.12}
\end{equation*}
$$

with

$$
\begin{gather*}
T_{2, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)=c_{0}(\lambda, h)^{2}\left\langle R(\lambda+\mathrm{i} 0) k_{ \pm b}(\cdot, \sqrt{2 \lambda} \omega) \mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm b}(\cdot, \sqrt{2 \lambda} \omega)}\right. \\
\left.k_{ \pm a}(\cdot, \sqrt{2 \lambda} \theta) \mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm a}(\cdot, \sqrt{2 \lambda} \theta)}\right\rangle . \tag{2.13}
\end{gather*}
$$

At the end of this section we will explain how we can extend the previous expression for complex energies. As can be easily seen, in the above expressions of T_{1} and T_{2}, it is natural to use the analytic continuation of the symbols involved in these formulae. Moreover, to extend the term T_{2}, it is essential to holomorphically continue the resolvent to complex energies. This is done by complex scaling, using hypothesis $\left(\mathbf{H o l}_{\infty}\right)$. We do not recall here the construction of the complex scaled operator (see $[14,15]$), we just give the main properties of this operator. For $\mu_{0}>0$ small enough $\epsilon_{0}>0$ and $0<\mu<\mu_{0}$, there exists $f_{\mu}: \mathbb{R}^{+} \rightarrow \mathbb{C}$ which is injective for every μ and satisfies the following properties:
(i) $f_{\mu}(t)=t$ for $0 \leqslant t \leqslant 7 R_{0}$,
(ii) $0 \leqslant \arg f_{\mu}(t) \leqslant \mu$ and $\partial_{t} f_{\mu}(t) \neq 0 \forall t$
(iii) $\arg f_{\mu}(t) \leqslant \arg \partial_{t} f_{\mu}(t) \leqslant \arg f_{\mu}(t)+\epsilon_{0}$
(iv) $\arg f_{\mu}(t)=\mathrm{e}^{\mathrm{i} \mu} t$, for $t \geqslant 8 R_{0}$.

Denoting by κ_{μ} the map given by

$$
\kappa_{\mu}: \mathbb{R}^{n} \ni x=t \omega \longmapsto f_{\mu}(t) \omega \quad t=|x|
$$

one defines $\Gamma_{\mu}=\kappa_{\mu}\left(\mathbb{R}^{n}\right)$ and $U_{\mu}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\Gamma_{\mu}\right)$ by $U_{\mu} \varphi(x)=J_{\mu}(x) \varphi\left(\kappa_{\mu}(x)\right)$ where $J_{\mu}(x)$ is the Jacobian associated with the transformation κ_{μ}. Next, we define the modified operator by $P_{\mu}(h)=U_{\mu} P(h) U_{\mu}^{-1}$. This is an unbounded non self-adjoint operator on $L^{2}\left(\Gamma_{\mu}\right)$ and the resonances of $P(h)$ are exactly the eigenvalues of any $P_{\mu}(h)$. Moreover, the resolvent
$\left(P_{\mu}-\lambda\right)^{-1}$ has a meromorphic continuation to $\{\lambda ;|\operatorname{Im} \lambda| \leqslant \mu\langle\operatorname{Re} \lambda\rangle\}$. Using estimates (2.9) for $k_{ \pm a}$ and $k_{ \pm b}$ and the properties of the phases $\Phi_{ \pm a}, \Phi_{ \pm b}$, it is easy to show that there exists $\epsilon_{1}>0$ such that for $\operatorname{Im} \lambda>0$, we have

$$
\begin{equation*}
U_{\mu}\left(\mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm b}(x, \sqrt{2 \lambda} \omega)} k_{ \pm b}(x, \sqrt{2 \lambda} \omega)\right)=\mathcal{O}\left(\mathrm{e}^{-\epsilon_{1}\langle x\rangle / h}\right) \tag{2.14}
\end{equation*}
$$

uniformly with respect to $\left.\left.|x| \geqslant 6 R_{0}, \omega \in S^{n-1}, h \in\right] 0,1\right]$ and $|\operatorname{Im} \lambda| \leqslant \mu\langle\operatorname{Re} \lambda\rangle$. Similarly, if we denote by $U_{-\mu}$ the operator associated with the conjugate deformation \bar{f}_{μ}, then for all $\left.\left.|x| \geqslant 4 R_{0}, \omega \in S^{n-1}, h \in\right] 0,1\right]$ and $|\operatorname{Im} \lambda| \leqslant \mu\langle\operatorname{Re} \lambda\rangle$, we have

$$
\begin{equation*}
U_{-\mu}\left(\mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm a}(x, \sqrt{2 \lambda} \theta)} k_{ \pm a}(x, \sqrt{2 \lambda} \theta)\right)=\mathcal{O}\left(\mathrm{e}^{-\epsilon_{2}\langle x\rangle / h}\right) \tag{2.15}
\end{equation*}
$$

where ϵ_{2} is a strictly positive constant. Therefore, using the analyticity of these quantities with respect to μ, it is not hard to prove that

$$
\begin{gather*}
T_{2, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)=c_{0}(\lambda, h)^{2}\left\langle R_{\mu}(\lambda, h) U_{\mu}\left(k_{ \pm b}(\cdot, \sqrt{2 \lambda} \omega) \mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm b}(\cdot, \sqrt{2 \lambda} \omega)}\right),\right. \\
\left.U_{-\mu}\left(k_{ \pm a}(\cdot, \sqrt{2 \lambda} \theta) \mathrm{e}^{\mathrm{i} h^{-1} \Phi_{ \pm a}(\cdot, \sqrt{2 \lambda} \theta)}\right)\right\rangle \tag{2.16}
\end{gather*}
$$

for $\lambda>0$, where $R_{\mu}(\lambda, h)=\left(P_{\mu}(h)-\lambda\right)^{-1}$ is the resolvent of the modified operator. For $\mu>0$ fixed, Sjöstrand [15] showed that $R_{\mu}(\lambda, h)$ is analytic in the region $\{\operatorname{Im} \lambda>0\}$ and is meromorphic in the sector $\left.\mathrm{e}^{-\mathrm{i}[0, \mu]}\right] 0,+\infty[$. By definition, the resonances of $P(h)$ are the poles of $R_{\mu}(\lambda, h)$. It follows from (2.16) that the poles of $T_{2}(\theta, \omega, \lambda, h)$ coincide with the resonances of $P(h)$.

The next step is to extend $T_{1, \pm b}^{ \pm a}$ to complex energies. We need to extend $T_{1, \pm b}^{ \pm a}$ as a function, so that we do not have to recall the general construction of [4]. More precisely, we work in the case where $\omega, \theta \in S^{n-1}$ are fixed and $\omega \neq \theta$. As mentioned in [4], we can choose the parameters $\sigma_{2}^{ \pm}$sufficiently close to 1 and $\delta>0$ small enough, such that

$$
\begin{equation*}
\forall y \in \mathbb{R}^{n} \quad \cos (y, \omega) \geqslant \sigma_{2}^{-}-\delta \quad \Longrightarrow \quad \frac{\langle y, \omega-\theta\rangle}{|y|} \geqslant 2 \alpha>0 . \tag{2.17}
\end{equation*}
$$

We will use this property at the end of the demonstration, but for the moment we simply recall that for $\lambda \in \mathbb{R}_{+}^{*}, T_{1, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)$ is given by
$T_{1, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)=c_{0}(\lambda, h)^{2} \int \mathrm{e}^{\mathrm{i} h^{-1}(\sqrt{2 \lambda}\langle\omega-\theta, x\rangle+r(x, \lambda))} k_{ \pm b}(x, \sqrt{2 \lambda} \omega) \bar{a}_{ \pm}(x, \sqrt{2 \lambda} \theta) \mathrm{d} x$
where $r(x, \lambda)=r_{ \pm b}^{ \pm a}(x, \lambda)=\mathcal{O}\left(\langle x\rangle^{1-\rho}\langle\sqrt{\lambda}\rangle^{1-\rho}\right)$. Working as in [4], we can split $T_{1, \pm b}^{2, \pm a}(\theta, \omega$, $\lambda, h)$ into the sum of two terms

$$
T_{1, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)=f_{1}(\theta, \omega, \lambda, h)+f_{2}(\theta, \omega, \lambda, h)
$$

where f_{1} is given by
$f_{1}(\theta, \omega, \lambda, h)=c_{0}(\lambda, h)^{2} \int_{|x| \leqslant 6 R_{0}} \mathrm{e}^{\mathrm{i} h h^{-1}(\sqrt{2 \lambda}(\omega-\theta, x)+r(x, \lambda))} k_{ \pm b}(x, \sqrt{2 \lambda} \omega) \bar{a}_{ \pm}(x, \sqrt{2 \lambda} \theta) \mathrm{d} x$.

Using propositions 2 and 3, it is obvious that the functions $(r, \rho) \mapsto k_{ \pm b}(r x, \rho \omega) \bar{a}_{ \pm}(r x, \rho \theta)$ are holomorphic with respect to $r \in\left\{|r| \geqslant 5 R_{0}\right\} \cap\{|\operatorname{Im} r| \leqslant \epsilon\langle\operatorname{Re} r\rangle\}$ and $\rho \in\left\{d_{2}^{-1} \leqslant|\rho| \leqslant\right.$ $\left.d_{2}\right\} \cap\{|\operatorname{Im} \rho| \leqslant \epsilon\langle\operatorname{Re} \rho\rangle\}$. Hence, we obtain that f_{1} has a holomorphic continuation to

$$
\Lambda_{d_{2}, \epsilon}=\left\{\lambda \in \mathbb{C} ;|\operatorname{Im} \lambda| \leqslant \epsilon\langle\operatorname{Re} \lambda\rangle, \frac{d_{2}^{-2}}{2} \leqslant|\operatorname{Re} \lambda| \leqslant \frac{d_{2}^{2}}{2}\right\}
$$

Moreover, for $\lambda \in \Lambda_{d_{2}, \epsilon}$ we have $\frac{d_{2}}{\sqrt{2 \lambda}} \geqslant 1$ and we can write $f_{2}=f_{3}+f_{4}$ with
$f_{3}(\theta, \omega, \lambda, h)=c_{0}(\lambda, h)^{2} \int_{6 R_{0} \leqslant|x| \leqslant \frac{7 R_{0} d_{2}}{\sqrt{2 \lambda}}} \mathrm{e}^{\mathrm{i} h^{-1}(\sqrt{2 \lambda}\langle\omega-\theta, x\rangle+r(x, \lambda))} k_{ \pm b}(x, \sqrt{2 \lambda} \omega) \bar{a}_{ \pm}(x, \sqrt{2 \lambda} \theta) \mathrm{d} x$
which gives after a change of variables

$$
\begin{align*}
f_{3}(\theta, \omega, \lambda, h)= & \frac{c_{0}(\lambda, h)^{2}}{\lambda^{n / 2}} \int_{6 R_{0} \sqrt{2 \lambda} \leqslant|y| \leqslant 7 R_{0} d_{2}} \mathrm{e}^{\mathrm{i} h^{-1}\left(\langle\omega-\theta, y)+r_{ \pm}(y / \sqrt{2 \lambda}, \lambda)\right)} \\
& \times k_{ \pm b}\left(\frac{y}{\sqrt{2 \lambda}}, \sqrt{2 \lambda} \omega\right) \bar{a}_{ \pm}\left(\frac{y}{\sqrt{2 \lambda}}, \sqrt{2 \lambda} \theta\right) \mathrm{d} y . \tag{2.19}
\end{align*}
$$

As in the case of f_{1}, this expression has a holomorphic continuation to the domain $\Lambda_{d_{2}, \epsilon}$ and it remains to examine
$f_{4}(\theta, \omega, \lambda, h)=\frac{c_{0}(\lambda, h)^{2}}{\lambda^{n / 2}} \int_{|y| \geqslant 7 R_{0} d_{2}} \mathrm{e}^{\mathrm{i} h-1\left(\langle\omega-\theta, y)+r_{ \pm}(y / \sqrt{2 \lambda, \lambda)})\right.}$

$$
\begin{equation*}
\times k_{ \pm b}\left(\frac{y}{\sqrt{2 \lambda}}, \sqrt{2 \lambda \omega}\right) \bar{a}_{ \pm}\left(\frac{y}{\sqrt{2 \lambda}}, \sqrt{2 \lambda \theta}\right) \mathrm{d} y . \tag{2.20}
\end{equation*}
$$

For this purpose, let us fix $\sigma_{3}^{ \pm}$such that $0<\sigma_{2}^{-}-\delta<\sigma_{3}^{-}<\sigma_{2}^{-}<\sigma_{2}^{+}<\sigma_{3}^{+}<1$, where δ is given by (2.17). We introduce a cut-off function χ_{ω} such that

$$
\operatorname{supp} \chi_{\omega} \subset\left\{|y| \geqslant 7 R_{0} d_{2}, \cos (y, \omega) \in\left[\sigma_{3}^{-}, \sigma_{3}^{+}\right]\right\}
$$

and

$$
\chi_{\omega}=1 \text { on }\left\{|y| \geqslant 8 R_{0} d_{2}, \cos (y, \omega) \in\left[\sigma_{2}^{-}, \sigma_{2}^{+}\right]\right\} .
$$

We define also

$$
u(y, \lambda, \theta, \omega, h)=\mathrm{e}^{\mathrm{i} h^{-1} r(y / \sqrt{2 \lambda}, \lambda)} k_{ \pm b}\left(\frac{y}{\sqrt{2 \lambda}}, \sqrt{2 \lambda} \omega\right) \bar{a}_{ \pm}\left(\frac{y}{\sqrt{2 \lambda}}, \sqrt{2 \lambda} \theta\right)
$$

and we decompose f_{4} as $f_{4}=f_{5}+f_{6}$, with
$f_{5}(\theta, \omega, \lambda, h)=\frac{c_{0}(\lambda, h)^{2}}{\lambda^{n / 2}} \int\left(1-\chi_{\omega}\right)(y) \mathrm{e}^{\mathrm{i} h^{-1}\langle\omega-\theta, y\rangle} u(y, \lambda, \theta, \omega, h) \mathrm{d} y$
and

$$
\begin{equation*}
f_{6}(\theta, \omega, \lambda, h)=\frac{c_{0}(\lambda, h)^{2}}{\lambda^{n / 2}} \int \chi_{\omega}(y) \mathrm{e}^{\mathrm{i} h^{-1}\langle\omega-\theta, y\rangle} u(y, \lambda, \theta, \omega, h) \mathrm{d} y . \tag{2.22}
\end{equation*}
$$

Using the fact that $k_{ \pm b}(x, \xi)=\mathcal{O}\left(\mathrm{e}^{-\epsilon_{2}\langle x\rangle / h}\right)$ for $\cos (\operatorname{Re} x, \operatorname{Re} \xi) \notin\left[\sigma_{2}^{-}, \sigma_{2}^{+}\right]$, we show easily that for $\epsilon_{3}, \epsilon>0$ small enough, $\lambda \in \Lambda_{d_{2}, \epsilon}$ and $y \in \operatorname{supp}\left(1-\chi_{\omega}\right)$, we have $k_{ \pm b}\left(\frac{y}{\sqrt{2 \lambda}}, \sqrt{2 \lambda} \omega\right)=\mathcal{O}\left(\mathrm{e}^{-\epsilon_{3}\langle x\rangle / h}\right)$. Moreover, we deduce from proposition 3 that for $\lambda \in \Lambda_{d_{2}, \epsilon}$ and $y \in \operatorname{supp}\left(1-\chi_{\omega}\right)$ we have

$$
|u(y, \lambda, \theta, \omega, h)| \leqslant C \mathrm{e}^{-\epsilon_{3}(y\rangle / h}\left|\mathrm{e}^{\mathrm{i} h^{-1} r_{ \pm}(y / \sqrt{2 \lambda}, \lambda)}\right| \leqslant C \mathrm{e}^{-\epsilon_{3}\langle y\rangle / h+C\langle y)^{1-\rho} / h}
$$

As $\rho>0$, we can take R_{0} sufficiently large and ϵ_{4} small enough so that

$$
\forall \lambda \in \Lambda_{d_{2}, \epsilon} \quad \forall y \in \operatorname{supp}\left(1-\chi_{\omega}\right) \quad|u(y, \lambda, \theta, \omega, h)| \leqslant C \mathrm{e}^{-\epsilon_{4}(y) / h} .
$$

It follows immediately from this estimate that f_{5} has a holomorphic continuation to $\Lambda_{d_{2}, \epsilon}$ and that

$$
\begin{equation*}
\forall \lambda \in \Lambda_{d_{2}, \epsilon},\left|f_{5}(\theta, \omega, \lambda, h)\right| \leqslant C h^{-n-1} \tag{2.23}
\end{equation*}
$$

The continuation of f_{6} is performed via a change of integration path in formula (2.22). Let χ_{0} be a \mathcal{C}^{∞}-smooth function with supp $\chi_{0} \subset\left\{|y| \geqslant 9 R_{0} d_{2}\right\}$ and $\chi_{0}=1$ on $\left\{|y| \geqslant 10 R_{0} d_{2}\right\}$. For $\epsilon>0$, the new path of integration will be $L_{\epsilon, \chi_{0}}=\left\{1+\mathrm{i} \epsilon \chi_{0}(|y|), y \in \mathbb{R}^{n}\right\}$. Using (2.17), it is clear that for all $y \in \operatorname{supp} \chi_{\omega},\langle y, \omega-\theta\rangle \geqslant \alpha|y|$. It follows, for ϵ sufficiently small and $y \in L_{\epsilon, \chi_{0}}$, that we have $\operatorname{Im}\langle y, \omega-\theta\rangle \geqslant \alpha|y|$ and then

$$
\left|\mathrm{e}^{\mathrm{i} h^{-1}\langle y, \omega-\theta\rangle}\right| \leqslant \mathrm{e}^{-\alpha|y| / h} .
$$

Therefore, the integral giving f_{6} becomes absolutely convergent and we can easily extend f_{6} holomorphically, to $\Lambda_{d_{2}, \epsilon}$, for $\epsilon>0$ small enough, by

$$
\begin{equation*}
f_{6}(\theta, \omega, \lambda, h)=\frac{c_{0}(\lambda, h)^{2}}{\lambda^{n / 2}} \int_{L_{\epsilon, \chi_{0}}} \chi_{\omega}(y) \mathrm{e}^{\mathrm{i} h^{-1}\langle\omega-\theta, y\rangle} u(y, \lambda, \theta, \omega, h) \mathrm{d} y \tag{2.24}
\end{equation*}
$$

Thus, we have extended the kernel $T_{1, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)$ to the domains $\Lambda_{d_{2}, \epsilon}$, for $\epsilon>0$ small enough. Moreover the continuation can be decomposed into the sum

$$
\begin{equation*}
T_{1, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)=\left(f_{1}+f_{3}+f_{5}+f_{6}\right)(\theta, \omega, \lambda, h) \tag{2.25}
\end{equation*}
$$

where $f_{j}, j=1,3,5,6$ are given by (2.18), (2.19), (2.21) and (2.24) respectively. These formulae permit a bound for $T_{1, \pm b}^{ \pm a}$ to be obtained for complex energies.

Proposition 4. Let ω and θ be fixed in S^{n-1} with $\theta \neq \omega$. Then, there exist $\epsilon_{0}, h_{0}>0$ and $C>0$ such that for all $0<\epsilon<\epsilon_{0}$ and λ satisfying $|\operatorname{Im} \lambda| \leqslant \epsilon\langle\operatorname{Re} \lambda\rangle, \frac{d_{2}^{-2}}{2} \leqslant|\operatorname{Re} \lambda| \leqslant \frac{d_{2}^{2}}{2}$, we have

$$
\forall 0<h<h_{0} \quad\left|T_{1, \pm b}^{ \pm a}(\theta, \omega, \lambda, h)\right| \leqslant C \mathrm{e}^{C / h}
$$

Proof. We have just shown that $T_{1, \pm b}^{ \pm a}=f_{1}+f_{3}+f_{5}+f_{6}$, so that we have to control each f_{j}. We begin by the analysis of f_{1}. In the following, C will denote a positive constant that may change from line to line. For $\lambda \in \Lambda_{d_{2}, \epsilon}$, we deduce from equation (2.18) that

$$
\begin{aligned}
\left|f_{1}(\theta, \omega, \lambda, h)\right| & \leqslant C h^{-n} \sup _{|y| \leqslant 6 R_{0}}\left|k_{ \pm b}(y, \sqrt{2 \lambda} \omega) \bar{a}_{ \pm}(y, \sqrt{2 \lambda} \theta)\right| \\
& \times \int_{|x| \leqslant 6 R_{0}} \mathrm{e}^{h^{-1}(\operatorname{Im}(\sqrt{2 \lambda)}|\omega-\theta||x|-|r(x, \lambda)|)} \mathrm{d} x .
\end{aligned}
$$

Using the fact that $r(x, \lambda)=\mathcal{O}\left(\langle x\rangle^{1-\rho}\langle\sqrt{\lambda}\rangle^{1-\rho}\right)$, we obtain for R_{0} sufficiently large

$$
\begin{equation*}
\forall \lambda \in \Lambda_{d_{2}, \epsilon} \quad\left|f_{1}(\theta, \omega, \lambda, h)\right| \leqslant C h^{-n} \mathrm{e}^{C / h} \leqslant C \mathrm{e}^{C / h} \tag{2.26}
\end{equation*}
$$

The case of f_{3} is similar and we use the fact that after integration over a compact set we get

$$
\begin{equation*}
\forall \lambda \in \Lambda_{d_{2}, \epsilon} \quad\left|f_{3}(\theta, \omega, \lambda, h)\right| \leqslant C h^{-n} \mathrm{e}^{C / h} \leqslant C \mathrm{e}^{C / h} \tag{2.27}
\end{equation*}
$$

The estimate of f_{5} has already been obtained in (2.23) and treating f_{6} remains. By the definition of χ_{ω}, there exists $\alpha>0$ such that

$$
\left|\chi_{\omega}(y, \omega) \mathrm{e}^{\mathrm{i} h h^{-1}\langle y, \omega-\theta\rangle}\right| \leqslant \mathrm{e}^{-\alpha|y| / h}
$$

Moreover, using the definition of $r_{ \pm}$and proposition 3, we can choose R_{0} large enough so that $u(y, \lambda, \theta, \omega, h) \leqslant \mathrm{e}^{\alpha|y| / 2 h}$. Hence, we deduce from (2.24) that

$$
\begin{equation*}
\forall \lambda \in \Lambda_{d_{2}, \epsilon},\left|f_{6}(\theta, \omega, \lambda, h)\right| \leqslant C h^{-n} \int \mathrm{e}^{-\alpha|y| / 2 h} \mathrm{~d} y \leqslant C h^{-n-1} \tag{2.28}
\end{equation*}
$$

Combining equations (2.26), (2.27), (2.23) and (2.28) we obtain the result.

3. Residues' estimate

The aim of this section is to prove theorem 1. As in [18], we apply the semi-classical maximum principle to a well-chosen function.

3.1. Preliminary estimates of an auxiliary function

As a preparation, we introduce the following function. For z in $\Omega(h)$, we set

$$
\begin{equation*}
F(z, h)=\left(\prod_{\xi \in \Lambda(h)} \frac{z-\xi}{z-\bar{\xi}}\right) f(\theta, \omega, z, h) \tag{3.1}
\end{equation*}
$$

Following [18], we apply the semi-classical maximum principle to this function. The latter was originally proved by Tang and Zworski [20, 21], generalizing lemma 1 in [19]. The following lemma is a refined version of this principle, due to Stefanov [17].

Lemma 1. For $0<h<1$, let $a(h) \leqslant b(h)$. Suppose that $G(z, h)$ is a holomorphic function of z defined in a neighbourhood of

$$
U(h)=[a(h)-5 \omega(h), b(h)+5 \omega(h)]+\mathrm{i}\left[-S(h) h^{-n-2}, 0\right]
$$

where $0<S(h) \leqslant \omega(h) h^{\frac{3 n+5}{2}}$ and $\omega(h) \rightarrow 0$ as $h \rightarrow 0$. Assume that $F(z, h)$ satisfies

$$
\begin{align*}
& |G(z, h)| \leqslant A \exp \left(A h^{-n-1} \log (1 / h)\right) \quad \text { on } \quad U(h) \tag{3.2}\\
& |G(z, h)| \leqslant M(h) \quad \text { on } \quad[a(h)-6 \omega(h), b(h)+6 \omega(h)] \tag{3.3}
\end{align*}
$$

with $M(h) \rightarrow+\infty$ when $h \rightarrow 0$. Then, there exists $h_{0}>0$ such that
$|G(z, h)| \leqslant 2 \mathrm{e}^{3} M(h) \quad \forall z \in \tilde{U}(h):=[a(h)-\omega(h), b(h)+\omega(h)]+\mathrm{i}[-S(h), 0]$
for $0<h<h_{0}$.
Using this lemma, we can prove the main result of this section which is stated in the following proposition.

Proposition 5. Under the hypotheses of theorem 1, we can find $h_{0}>0$ small enough and $C>0$ such that

$$
\begin{equation*}
\left.\forall h \in] 0, h_{0}\right] \quad \forall z \in \tilde{U}(h) \quad|F(z, h)| \leqslant C h^{-\frac{n-1}{2}} \tag{3.4}
\end{equation*}
$$

where

$$
\tilde{U}(h)=\left[E_{1}(h)-2 \omega(h), E_{2}(h)+2 \omega(h)\right]+\mathrm{i}[-2 S(h), 0] .
$$

To prove this proposition we will show that the function $F(z, h)$ satisfies the estimates (3.3) and (3.2). For this purpose, we need to control the norm of the modified resolvent $\left(P_{\mu}(h)-z\right)^{-1}$ near the poles $\xi \in \Lambda(h)$.

Lemma 2. Under the hypotheses of theorem 1 , we can find $\mu_{0}>0, h_{0}>0$ small enough and $C>0$ such that for all $\mu<\mu_{0}, 0<h<h_{0}$ and $z \in \Omega_{\frac{3}{4}}(h)$ we have

$$
\begin{equation*}
\left\|\left(\prod_{\xi \in \Lambda(h)} \frac{z-\xi}{z-\bar{\xi}}\right)\left(P_{\mu}(h)-z\right)^{-1}\right\|_{L^{2}\left(\Gamma_{\mu}\right), L^{2}\left(\Gamma_{\mu}\right)} \leqslant C \mathrm{e}^{C h^{-n-1}} \tag{3.5}
\end{equation*}
$$

where $\Omega_{\frac{3}{4}}(h)$ is the domain
$\Omega_{\frac{3}{4}}(h)=\left\{z \in \mathbb{C} ; E_{1}(h)-\frac{21}{4} \omega(h) \leqslant \operatorname{Re} z \leqslant E_{2}(h)+\frac{21}{4} \omega(h), 0 \leqslant-\operatorname{Im} z \leqslant 3 h^{-n-2} S(h)\right\}$.

Proof. The proof is based on the estimate established by Tang and Zworski in the proof of lemma 1 of [20]:

$$
\begin{equation*}
\left\|\left(P_{\mu}(h)-z\right)^{-1}\right\|_{L^{2}\left(\Gamma_{\mu}\right), L^{2}\left(\Gamma_{\mu}\right)} \leqslant C \mathrm{e}^{C h^{-n} \log \frac{1}{g(h)}} \quad \forall z \in \Omega(h) \bigcup_{z_{j} \in \operatorname{Res}(P(h))} D\left(z_{j}, g(h)\right) \tag{3.6}
\end{equation*}
$$

where $0<g(h) \ll 1$. Let us set

$$
F_{\mu}(z, h)=\left(\prod_{\xi \in \Lambda(h)} \frac{z-\xi}{z-\bar{\xi}}\right)\left(P_{\mu}(h)-z\right)^{-1}
$$

By construction, the resonances of $P(h)$ coincide with the poles of $\left(P_{\mu}(h)-z\right)^{-1}$ with the same multiplicity. As the resonances $\xi \in \Lambda(h)$ are simple, then $F_{\mu}(\cdot, h)$ is holomorphic in $\Omega(h)$. Hence, applying the maximum principle, it suffices to show that estimate (3.5) holds on the border $\partial \Omega_{\frac{3}{4}}(h)$. Let us recall that according to Burq's result ([2], theorem 1), there exists $C>0$ such that

$$
\operatorname{Res}(P(h)) \cap\left(\left[\frac{E_{1}(h)}{2}, \frac{3 E_{2}(h)}{2}\right]+\mathrm{i}\left[-\mathrm{e}^{-C / h}, 0\right]\right)=\emptyset
$$

Let us set $g(h)=\mathrm{e}^{-C / h} \ll 1$. With this choice of $g(h)$ it is easy to prove that all resonances are at least at distance $g(h)$ from $\partial \Omega_{\frac{3}{4}}(h)$. Indeed, as $\operatorname{Res}(P(h)) \cap\left(\Omega(h) \backslash \Omega_{0}(h)\right)=\emptyset$, for z in $\partial \Omega_{\frac{3}{4}}(h)$ we can write

$$
\begin{aligned}
\operatorname{dist}(z, \operatorname{Res}(P(h))) & \geqslant \min \left(\operatorname{dist}(z, \Lambda(h)), \operatorname{dist}\left(z, \operatorname{Res}\left(P(h) \cap \Omega(h)^{c}\right)\right)\right) \\
& \geqslant \min \left(S(h), \operatorname{dist}\left(\Omega_{\frac{3}{4}}(h), \Omega(h)^{c}\right)\right) \\
& \geqslant \min \left(S(h), \frac{h^{-n-2}}{4} S(h)\right) \geqslant \mathrm{e}^{-C / h}
\end{aligned}
$$

where the second inequality comes from $S(h) \geqslant-\operatorname{Im} \xi \geqslant \mathrm{e}^{-C / h}, \forall \xi \in \Lambda(h)$. It follows that we can apply estimate (3.6) for $z \in \partial \frac{3}{4} \Omega(h)$ to get
$\forall z \in \partial \Omega_{\frac{3}{4}}(h) \quad\left\|F_{\mu}(z, h)\right\|_{L^{2}\left(\Gamma_{\mu}\right), L^{2}\left(\Gamma_{\mu}\right)} \leqslant C\left(\prod_{\xi \in \Lambda(h)} \frac{|z-\xi|}{|z-\bar{\xi}|}\right) \mathrm{e}^{C h^{-n-1}} \leqslant C \mathrm{e}^{C h^{-n-1}}$
and the proof is complete.
Proof of proposition 5. Let us set $a(h)=E_{1}(h), b(h)=E_{2}(h)$ and

$$
U(h)=[a(h)-6 \omega(h), b(h)+6 \omega(h)]+\mathrm{i}\left[-2 S(h) h^{-n-2}, 0\right] .
$$

By definition, $0<S(h) \leqslant \omega(h) h^{\frac{3 n+5}{2}}$ with $\omega(h) \rightarrow 0$ as $h \rightarrow 0$. It follows that $U(h)$ is exactly in the form required in lemma 1 . As each $\xi \in \Lambda(h)$ is a simple resonance of $P(h), F(z, h)$ is a holomorphic function of z in $\Omega(h)$. We have just checked that the domain $U(h)$ satisfies the hypotheses of this lemma, so that we need only verify estimates (3.2) and (3.3) with $M(h)=h^{-\frac{n-1}{2}}$.
Proof of estimate (3.3). It is based on the estimate of the scattering amplitude for real energies, proved in [11]. First, note that for $\lambda \in \mathbb{R}_{+}^{*}$ and $\xi \in \Lambda(h),\left|\frac{\lambda-\xi}{\lambda-\xi}\right|=1$ and

$$
|F(\lambda, h)|=|f(\theta, \omega, \lambda, h)| .
$$

Now, it suffices to apply theorem 2 to obtain

$$
|F(\lambda, h)|=\mathcal{O}\left(h^{-\frac{n-1}{2}}\right)
$$

and the proof of estimate (3.3) is complete.

Proof of estimate (3.2). First we choose $h_{0}>0$ such that for all $0<h<h_{0}, \Omega(h) \subset \Lambda_{d_{2}, \epsilon}$, where $\Lambda_{d_{2}, \epsilon}$ is defined in section 2 and we suppose $0<h<h_{0}$. For $z \in \Omega(h)$ we have the decomposition

$$
F(z, h)=\Pi(z, h)\left(T_{1}(\theta, \omega, z, h)-T_{2}(\theta, \omega, z, h)\right)
$$

where T_{1} is defined by (2.10) with (2.25), T_{2} is defined by (2.10) with (2.16) and

$$
\Pi(z, h)=c(z, h) \prod_{\xi \in \Lambda(h)} \frac{z-\xi}{z-\bar{\xi}} .
$$

Here $c(z, h)$ is given by formula (1.2) and is chosen to be holomorphic in $\mathbb{C} \backslash]-\infty, 0]$. We will estimate successively each term of the right-hand side of this equation. We begin by the estimate of $F_{2}(z, h)=\Pi(z, h) T_{2}(\theta, \omega, z, h)$ and we note that

$$
\forall z \in\{y \in \mathbb{C} ; \operatorname{Im} y<0\} \quad|\Pi(z, h)| \leqslant|c(z, h)| \leqslant C h^{\frac{n-1}{2}}
$$

Using estimates (2.14) and (2.15) in combination with (2.16), it is obvious that

$$
\left|F_{2}(z, h)\right| \leqslant C\left\|\Pi(z, h)\left(P_{\mu}(h)-z\right)^{-1}\right\|_{L^{2}\left(\Gamma_{\mu}\right), L^{2}\left(\Gamma_{\mu}\right)}
$$

for $z \in \Omega(h)$. Using the fact that $U(h) \subset \frac{3}{4} \Omega(h)$, we deduce immediately from lemma 2 that $\left|F_{2}(z, h)\right| \leqslant C \mathrm{e}^{C h^{-n-1}}$ for all $z \in U(h)$. Therefore, it remains to estimate $F_{1}(z, h)=$ $\Pi(z, h) T_{1}(\theta, \omega, z, h)$. Using proposition 4 and identity (2.10), we get immediately

$$
\forall z \in \Omega(h) \quad\left|F_{1}(z, h)\right| \leqslant\left|c h^{\frac{n-1}{2}} T_{1}(\theta, \omega, z, h)\right| \leqslant C \mathrm{e}^{C / h} \leqslant C \mathrm{e}^{C h^{-n-1}}
$$

and the proof of estimate (3.2) is complete.

3.2. Proof of theorem 1

Let us recall that

$$
f(\theta, \omega, z, h)=\sum_{\xi \in \Lambda(h)} \frac{f_{\xi}^{\mathrm{res}}(\theta, \omega, h)}{z-\xi}+f^{\mathrm{hol}}(\theta, \omega, z, h)
$$

where $f^{\text {hol }}(\theta, \omega, z, h)$ is holomorphic with respect to $z \in \Omega(h)$. By a simple calculation, we obtain

$$
\begin{equation*}
f_{\xi}^{\mathrm{res}}(\theta, \omega, h)=2 \mathrm{i} \operatorname{Im}(\xi) F(\xi, h)\left(\prod_{\zeta \in \Lambda(h) \backslash\{\xi\}} \frac{\xi-\bar{\zeta}}{\xi-\zeta}\right) \quad \forall \xi \in \Lambda(h) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\mathrm{hol}}(\theta, \omega, z, h)=\left(\prod_{\xi \in \Lambda(h)} \frac{z-\bar{\xi}}{z-\xi}\right) F(z, h)-\sum_{\xi \in \Lambda(h)} \frac{f_{\xi}^{\mathrm{res}}}{z-\xi} \quad \forall z \in \Omega(h) \tag{3.8}
\end{equation*}
$$

Using proposition 5, it follows that
$\left|f_{\xi}^{\mathrm{res}}(\theta, \omega, h)\right| \leqslant C h^{-\frac{n-1}{2}}|\operatorname{Im} \xi| \prod_{\zeta \in \Lambda(h) \backslash\{\xi\}} \frac{|\xi-\bar{\zeta}|}{|\xi-\zeta|} \leqslant C h^{-\frac{n-1}{2}}|\operatorname{Im} \xi| \prod_{\zeta \in \Lambda(h) \backslash\{\xi\}}\left(1+\frac{2|\operatorname{Im} \xi|}{|\xi-\zeta|}\right)$.

Hence, we have to estimate the product which appears in the right-hand side of the last equation. If we just write that $|\operatorname{Im} \xi| \leqslant S(h)$ and $\forall \zeta \in \Lambda(h) \backslash\{\xi\},|\xi-\zeta| \geqslant \epsilon S(h)$, we obtain

$$
\prod_{\zeta \in \Lambda(h) \backslash\{\xi\}}\left(1+\frac{2|\operatorname{Im} \xi|}{|\xi-\zeta|}\right) \leqslant\left(1+\epsilon^{-1}\right)^{K(h)} .
$$

As $K(h)$ may grow as h^{-n}, this estimate does not give a polynomial bound on $f_{\xi}^{\text {res }} /|\operatorname{Im} \xi|$. To overcome this difficulty, we use the fact that the resonances cannot accumulate in a given area. In the following lemma, $[x]$ denotes the integer part of $x \in \mathbb{R}$.

Lemma 3. Assume $\left(\mathbf{S e p}_{\epsilon}\right)$ with $0<\epsilon<1$ and let $\alpha \in\left[E_{1}(h)-\omega(h), E_{2}(h)+\omega(h)\right]$. Then we can find $L_{\epsilon}(h) \in\left[\frac{\epsilon}{2} K(h),\left(\frac{2}{\epsilon}-1\right)^{-1} K(h)\right]$ such that

$$
\begin{equation*}
\Lambda(h)=\bigcup_{j=1}^{L_{\epsilon}(h)} \bigcup_{i=1}^{[2 / \epsilon]}\left\{z_{i j}\right\} \tag{3.10}
\end{equation*}
$$

and
$\forall z \in \Omega(h) \cap\{\operatorname{Re} z=\alpha\} \quad \forall j \geqslant 2 \quad \forall i \in\{1, \ldots,[2 / \epsilon]\} \quad\left|z-z_{i j}\right| \geqslant(j-1) \frac{\epsilon S(h)}{6}$.

Let us complete the proof of theorem 1, assuming lemma 3. From here until the end of this paper, C_{ϵ} will denote a positive constant independent of h, which can change from line to line. Our aim is to give a good estimate of

$$
\Pi_{1}(\xi, h)=\prod_{\zeta \in \Lambda(h) \backslash\{\xi\}}\left(1+\frac{2|\operatorname{Im} \xi|}{|\xi-\zeta|}\right)
$$

Let us apply lemma 3 with $\alpha=\operatorname{Re} \xi$. Then we can write

$$
\Lambda(h)=\bigcup_{j=1}^{L_{\epsilon}(h)} \bigcup_{i=1}^{[2 / \epsilon]}\left\{z_{i j}\right\}
$$

with $z_{11}=\xi$ and

$$
\forall j \geqslant 2 \quad \forall i \in\{1, \ldots,[2 / \epsilon]\} \quad\left|\xi-z_{i j}\right| \geqslant(j-1) \frac{\epsilon S(h)}{6} .
$$

Using $\left(\mathbf{S e p}_{\epsilon}\right)$ to separate ξ and $z_{1 i}, i=1, \ldots,[2 / \epsilon]$, we obtain

$$
\begin{aligned}
\Pi_{1}(\xi, h) & \leqslant \prod_{i=2}^{[2 / \epsilon]}\left(1+\frac{2 S(h)}{\epsilon S(h)}\right) \prod_{j=2}^{L_{\epsilon}(h)} \prod_{i=1}^{[2 / \epsilon]}\left(1+\frac{12 S(h)}{(j-1) \epsilon S(h)}\right) \\
& \leqslant\left(1+\frac{2}{\epsilon}\right)^{[2 / \epsilon]-1} \prod_{j=2}^{L_{\epsilon}(h)} \prod_{i=1}^{[2 / \epsilon]}\left(1+\frac{12}{(j-1) \epsilon}\right) \leqslant C_{\epsilon}\left(1+L_{\epsilon}(h)\right)^{24 / \epsilon^{2}}
\end{aligned}
$$

Here, we have used the elementary estimate $\prod_{j=1}^{N}\left(1+\frac{\alpha}{j}\right) \leqslant N^{\alpha}, \forall \alpha>0$. By construction, we have $L_{\epsilon}(h) \leqslant\left(\frac{2}{\epsilon}-1\right)^{-1} K(h) \leqslant K(h)$ and we obtain

$$
\begin{equation*}
\Pi_{1}(\xi, h) \leqslant C_{\epsilon}(1+K(h))^{24 / \epsilon^{2}} \tag{3.12}
\end{equation*}
$$

Finally, we deduce from equations (3.9) and (3.12) that

$$
\begin{equation*}
\left|f_{\xi}^{\text {res }}(\theta, \omega, h)\right| \leqslant C_{\epsilon} h^{-\frac{n-1}{2}} K(h)^{24 / \epsilon^{2}}|\operatorname{Im} \xi| . \tag{3.13}
\end{equation*}
$$

Now we shall estimate the holomorphic part $f^{\text {hol }}$ of the scattering amplitude. Let us denote $M_{\epsilon}(h)=h^{-\frac{n-1}{2}} K(h)^{24 / \epsilon^{2}}$. Starting from formula (3.8) and using estimate (3.13), we obtain
$\left|f^{\mathrm{hol}}(\theta, \omega, z, h)\right| \leqslant \Pi_{2}(z, h)|F(z, h)|+C_{\epsilon} M_{\epsilon}(h) \sum_{\xi \in \Lambda(h)} \frac{|\operatorname{Im} \xi|}{|z-\xi|} \quad \forall z \in \Omega(h)$
where $\Pi_{2}(z, h)=\prod_{\xi \in \Lambda(h)} \frac{|z-\bar{\xi}|}{|z-\xi|}$. Our aim is to estimate $f^{\text {hol }}$ on $\tilde{\Omega}(h)$. This function being analytic on $\Omega(h)$, it suffices to obtain an estimate on $\partial \tilde{\Omega}(h)$. Let $z \in \partial \tilde{\Omega}(h)$ and apply lemma 3 with $\alpha=\operatorname{Re} z$ in combination with estimate (3.4)

$$
\begin{aligned}
\left|f^{\mathrm{hol}}(\theta, \omega, z, h)\right| & \leqslant C h^{-\frac{n-1}{2}} \prod_{j=1}^{L_{\epsilon}(h)} \prod_{i=1}^{[2 / \epsilon]}\left(1+\frac{\left|2 \operatorname{Im} z_{i j}\right|}{\left|z-z_{i j}\right|}\right)+C_{\epsilon} M_{\epsilon}(h) \sum_{j=1}^{L_{\epsilon}(h)} \sum_{i=1}^{[2 / \epsilon]} \frac{\left|\operatorname{Im} z_{i j}\right|}{\left|z-z_{i j}\right|} \\
& \leqslant C_{\epsilon} M_{\epsilon}(h)+C_{\epsilon} M_{\epsilon}(h) \sum_{i=1}^{[2 / \epsilon]} \frac{\left|\operatorname{Im} z_{i 1}\right|}{\left|z-z_{i 1}\right|}+C_{\epsilon} M_{\epsilon}(h) \sum_{j=2}^{L_{\epsilon}(h)} \sum_{i=1}^{[2 / \epsilon]} \frac{6}{(j-1) \epsilon} \\
& \leqslant C_{\epsilon} M_{\epsilon}(h)\left(1+\frac{2}{\epsilon}+\frac{12}{\epsilon^{2}} \log \left(L_{\epsilon}(h)\right)+\sum_{i=1}^{[2 / \epsilon]} \frac{\left|\operatorname{Im} z_{i 1}\right|}{\left|z-z_{i 1}\right|}\right) .
\end{aligned}
$$

Moreover, for $z \in \partial \tilde{\Omega}(h)$ and $z_{i 1} \in \Lambda(h)$, we know that $\left|z-z_{i 1}\right| \geqslant \min \left(S(h), \omega(h),\left|\operatorname{Im} z_{i 1}\right|\right)$ and we obtain
$\left|f^{\mathrm{hol}}(\theta, \omega, z, h)\right| \leqslant C_{\epsilon} M_{\epsilon}(h)\left(1+\frac{4}{\epsilon}+\frac{12}{\epsilon^{2}} \log (1+\epsilon K(h))\right) \leqslant C_{\epsilon} M_{\epsilon}(h) \log (1+K(h))$.
This estimate completes the proof of theorem 1.
Proof of lemma 3. First, we number the resonances such that $\Lambda(h)=\bigcup_{j=1}^{K(h)}\left\{z_{j}\right\}$ and $\forall i \leqslant j, \operatorname{Re} z_{i} \leqslant \operatorname{Re} z_{j}$. Let us fix $\alpha \in\left[E_{1}(h)-\omega(h), E_{2}(h)+\omega(h)\right]$, then we can find $i_{0}(h) \in$ $\{1, \ldots, K(h)\}$ such that

$$
\forall i \leqslant i_{0}(h) \quad \operatorname{Re} z_{i} \leqslant \alpha \quad \text { and } \quad \forall i \geqslant i_{0}(h) \quad \operatorname{Re} z_{i} \geqslant \alpha .
$$

By induction, the proof is reduced to show that

$$
\begin{equation*}
\forall i_{1} \geqslant i_{0} \quad \forall i \geqslant i_{1}+[1 / \epsilon] \quad \operatorname{Re} z_{i} \geqslant \operatorname{Re} z_{i_{1}}+\frac{\epsilon S(h)}{6} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall j_{1} \leqslant i_{0} \quad \forall j \leqslant j_{1}-[1 / \epsilon] \quad \operatorname{Re} z_{j} \leqslant \operatorname{Re} z_{j_{1}}-\frac{\epsilon S(h)}{6} \tag{3.16}
\end{equation*}
$$

We give the proof of (3.15) only, because the demonstration of (3.16) is identical. Suppose that (3.15) does not hold. The sequence $\left(\operatorname{Re} z_{i}\right)_{i}$ being increasing, we can find $i_{1} \geqslant i_{0}$ such that

$$
\forall i \in\left\{i_{1}, \ldots, i_{1}+[1 / \epsilon]\right\} \quad \operatorname{Re} z_{i_{1}} \leqslant \operatorname{Re} z_{i} \leqslant \operatorname{Re} z_{i_{1}}+\frac{\epsilon S(h)}{6}
$$

Let us denote $\alpha_{1}=\operatorname{Re} z_{i_{1}}$ and $\Delta_{\epsilon}=\left[\alpha_{1}, \alpha_{1}+\frac{\epsilon S(h)}{6}\right]+\mathrm{i}[-S(h), 0]$. Then as the surface $S_{\epsilon}(h)$ of the rectangle Δ_{ϵ} is given by

$$
\begin{equation*}
S_{\epsilon}(h)=\frac{\epsilon S(h)^{2}}{6} . \tag{3.17}
\end{equation*}
$$

On the other hand, the balls $B\left(z_{i}, \frac{\epsilon S(h)}{2}\right), i=i_{1}, \ldots, i_{1}+[1 / \epsilon]$ do not intercept one another. Denoting $S_{i, \epsilon}(h)$ as the surface of each of these balls, it follows that

$$
S_{\epsilon}(h) \geqslant \frac{1}{4} \sum_{i=i_{1}}^{i_{1}+[1 / \epsilon]} S_{i, \epsilon}(h) \geqslant \frac{1}{4 \epsilon} \pi \frac{\epsilon^{2} S(h)}{4} \geqslant \frac{\pi \epsilon S(h)^{2}}{16} .
$$

Combining this equation and (3.17), we obtain a contradiction.

Acknowledgments

The author thanks V Petkov for suggesting this subject. We are also grateful to P Stefanov for his helpful remarks.

References

[1] Bruneau V and Petkov V 2003 Meromorphic continuation of the spectral shift function Duke Math. J. 116 389-430
[2] Burq N 2002 Lower bounds for shape resonances widths of long range Schrödinger operators Am. J. Math. 124 677-735
[3] Cardoso F and Vodev G 2002 Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II Ann. H Poincaré at press
[4] Gérard C and Martinez A 1989 Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée Ann. Inst. H Poincaré Phys. Théor. 51 81-110
[5] Helffer B and Sjöstrand J 1986 Résonances en limite semi-classique Mém. Soc. Math. Fr. (N.S.) 24-5
[6] Isozaki H and Kitada H 1985 Modified wave operators with time-independent modifiers J. Fac. Sci. Univ. Tokyo IA 32 77-104
[7] Isozaki H and Kitada H 1985 Scattering matrices for two-body Schrödinger operators Sci. Pap. Coll. Arts Sci. Univ. Tokyo 35 81-107
[8] Kaidi N and Kerdelhué P 2000 Forme normale de Birkhoff et résonances Asymptotic Anal. 23 1-21
[9] Lahmar-Benbernou A 1999 Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I Ann. Inst. H Poincaré Phys. Théor. 71 303-38
[10] Lahmar-Benbernou A and Martinez A 1999 Semiclassical asymptotics of the residues of the scattering matrix for shape resonances Asymptotic Anal. 20 13-38
[11] Michel L Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy Can. J. Math. at press
[12] Robert D and Tamura H 1989 Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits Ann. Inst. Fourier (Grenoble) 39 155-92
[13] Sjöstrand J 1992 Semi-excited states in nondegenerate potential wells Asymptotic Anal. 6 29-43
[14] Sjöstrand J 1997 A trace formula and review of some estimates for resonances Microlocal Analysis and Spectral Theory (Lucca, 1996) (Dordrecht: Kluwer) pp 377-437
[15] Sjöstrand J 2001 Resonances for bottles and trace formulae Math. Nachr. 221 95-149
[16] Stefanov P 2003 Sharp upper bounds on the number of resonances near the real axis for trapped systems Am. J. Math. 125 183-224
[17] Stefanov P 2001 Resonance expansions and Rayleigh waves Math. Res. Lett. 8 107-24
[18] Stefanov P 2002 Estimates on the residue of the scattering amplitude Asymptotic Anal. 32 317-33
[19] Stefanov P and Vodev G 1996 Neumann resonances in linear elasticity for an arbitrary body Commun. Math. Phys. 176 645-59
[20] Tang S-H and Zworski M 1998 From quasimodes to reasonances Math. Res. Lett. 5 261-72
[21] Tang S-H and Zworski M 2000 Resonance expansions of scattered waves Commun. Pure Appl. Math. 53 1305-34
[22] Vodev G 2001 Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds with cusps Preprint Univ. Nantes

